
letrec

Here is a question you have seen before:
What does this evaluate to?

(let ([f (lambda (x) (+ x 1))])
(let ([f (lambda (y) (if (= y 0) 10 (* 2 (f 0))))])

(f 3)))

A. 2
B. 4
C. 10
D. 20

Answer A: 2

(let ([f (lambda (x) (+ x 1))])
(let ([f (lambda (y) (if (= y 0) 10 (* 2 (f 0))))])

(f 3)))

The outer let makes an environment that binds f to "add 1"

In the inner let the lambda y expression is evaluated to a closure
whose closure environment has f bound to "add 1"
When we call (f 3) we evaluate the body of this closure in the closure
environment extended with a binding of y to 3. When we look up f in
this environment we get "add 1". So (* 2 (f 0)) evaluates to 2.

Why doesn't this work?

(let ([f (lambda (n) (if (= n 0) 1 (*n (f (- n 1)))))])
(f 5))

So what can we do to implement recursion??

We will have the parser parse a letrec expression such as
(letrec ([f exp1] [g exp2]) body

into something equivalent that only involves things we have already
implemented. We won't need to change eval-exp at all.

This will look stupid, but be patient.

What does this evaluate to?

(let ([f 0])
(let ([g 34])

(begin
(set! f g)
f)))

What does this evaluate to?

(let ([f 0])
(let ([g (lambda (x) (+ 1 x))])

(begin
(set! f g)
(f 5))))

What does this evaluate to?

(let ([f 0])
(let ([g (lambda (x) (if (< 9 x) 10 (f (+ 1 x))))])

(begin
(set! f g)
(f 5))))

OK; so how do we write factorial with lets instead of letrec?

Answer:
(let ([fact 0])

(let ([g (lambda (n) (if (= n 0) 1 (* n (fact (- n 1))))])
(begin

(set! fact g)
(fact 5))))

Here are some mutually recursive functions:
(letrec ([even? (lambda (x)

(cond
[(= 0 x) #t]
[(= 1 x) #f]
[else (odd? (- x 1))]))]

[odd? (lambda (x)
(cond

[(= 0 x) #f]
[(= 1 x) #t]
[else (even? (- x 1))]))])

(odd? 23))

How would you write this without letrec?

(let ([even? 0] [odd? 0])
(let ([g1 (lambda (x)

(cond
[(= 0 x) #t]
[(= 1 x) #f]
[else (odd? (- x 1))]))]

[g2 (lambda (x)
(cond

[(= 0 x) #f]
[(= 1 x) #t]
[else (even? (- x 1))]))])

(begin
(set! even? g1)
(set! odd? g2)
(odd? 23))))

In general we want to replace

(letrec ([f1 exp1] [f2 exp2] ... [fn expn])
body)

with
(let ([f1 0] [f2 0] ... [fn 0])

(let ([g1 exp1] [g2 exp2] ... [gn expn])
(begin

(set! f1 g1)
(set! f2 g2)

...
(set! fn gn)
body)))

How do we do that?

First, we need the g's to variables that don't appear anywhere else.

gensym is a Scheme function of no arguments that generates a new,
unused symbol:

(gensym) might return a value such as 'g8035

Now, what are the pieces we have in an expression such as

input = (letrec ([f1 exp1] [f2 exp2] ... [fn expn])
body)

We have
syms = (f1 ... fn) = (map car (cadr input))
exps = (exp1... expn) = (map cadr (cadr input))
body = (caddr input)

How do we build
(let ([f1 0] [f2 0] ... [fn 0])

To build a let-exp for this we need (f1...fn) We have that: syms

We need that many parsed 0s:
(map parse (map (lambda (x) 0) syms)) Isn't that clever???

We need the parsed body of this let expression. Its body is another
let expression, which parses into another let-exp

The inner let is
(let ([g1 exp1] [g2 exp2] ... [gn expn])

To build a let-exp for this we need
new-syms = (g1 ... gn) == (map (lambda (x) (gensym)) syms)
parsed-exps = (map parse exps)

And the body of this is the begin expression

That begin expression is
(begin

(set! f1 g1)
(set! f2 g2)

...
(set! fn gn)
body)))

You can generate the set!s with
(map (lambda (x y)) syms new-syms)

and then append that onto (list (parse body))

And then you are done and everything works!

You deserve to celebrate!!!

