letrec

Here is a question you have seen before:
What does this evaluate to?
(let ([f (lambda (x) (+ x 1))])
(let ([f (lambda (y) (if (= y 0) 10 (* 2 (f 0))))]) (f 3)))
A. 2
B. 4
C. 10
D. 20

Answer A: 2

(let ([f (lambda (x) (+ x 1))])

$$
\begin{aligned}
& (\operatorname{let}([f(\text { lambda }(y)(\text { if }(=y 0) 10(* 2(f 0))))]) \\
& (f 3)))
\end{aligned}
$$

The outer let makes an environment that binds f to "add 1"

In the inner let the lambda y expression is evaluated to a closure whose closure environment has f bound to "add 1"
When we call (f 3) we evaluate the body of this closure in the closure environment extended with a binding of y to 3 . When we look up f in this environment we get "add 1". So (* $2(\mathrm{f} 0)$) evaluates to 2 .

Why doesn't this work?

(let $\left(\left[f\left(\operatorname{lambda}(\mathrm{n})\left(\mathrm{if}(=\mathrm{n} 0) 1\left({ }^{*} \mathrm{n}(\mathrm{f}(-\mathrm{n} 1))\right)\right)\right)\right]\right)$
(f 5))

So what can we do to implement recursion??

We will have the parser parse a letrec expression such as (letrec ([f exp1] [g exp2]) body
into something equivalent that only involves things we have already implemented. We won't need to change eval-exp at all.

This will look stupid, but be patient.

What does this evaluate to?
(let ([f 0])
(let ([g 34])
(begin
(set! fg)
f)))

What does this evaluate to?

(let ([f 0])
(let ([g (lambda (x) (+ 1 x))])
(begin
(set! fg)
(f 5)))

What does this evaluate to?
(let ([f 0])
(let ([g (lambda (x) (if (< 9 x$) 10(\mathrm{f}(+1 \mathrm{x})))$)])
(begin
(set! fg)
(f 5))))

OK; so how do we write factorial with lets instead of letrec?

Answer:

(let ([fact 0])
(let ([g (lambda (n) (if (= n 0) 1 (* $\mathrm{n}($ fact ($-\mathrm{n} 1)))$)]) (begin
(set! fact g)
(fact 5))))

Here are some mutually recursive functions:
(letrec ([even? (lambda (x)
(cond

$$
\left.\begin{array}{l}
{[(=0}
\end{array}\right)
$$

$$
\text { [else (odd? }(-\times 1))]) \text {)] }
$$

[odd? (lambda (x)
(cond

$$
\begin{aligned}
& {[(=0 x) \# f]} \\
& {[(=1 x) \# t]} \\
& [\text { else (even? }(-x \text { 1) })])]])
\end{aligned}
$$

(odd? 23))

How would you write this without letrec?
(let ([even? 0] [odd? 0])
(let ([g1 (lambda (x)
(cond

$$
\begin{aligned}
& {[(=0 x) \# t]} \\
& {[(=1 x) \# f]} \\
& [\text { [else (odd? }(-x \text { (} 1))])] \text {] }
\end{aligned}
$$

[g2 (lambda (x)
(cond

$$
\begin{aligned}
& {[(=0 x) \# f]} \\
& {[(=1 x) \# t]} \\
& [\text { else (even? }(-x \text { x } 1))])] \text {) }
\end{aligned}
$$

(begin
(set! even? g1)
(set! odd? g2)
(odd? 23))))

In general we want to replace
(letrec ([ff $\left.\left.\exp _{1}\right]\left[f_{2} \exp _{2}\right] \ldots\left[f_{n} \exp _{n}\right]\right)$ body)
with

$$
\begin{aligned}
& \text { (let }\left(\left[f_{1} 0\right]\left[f_{2} 0\right] \ldots\left[f_{n} 0\right]\right) \\
& \quad\left(\text { let }\left(\left[g_{1} \exp _{1}\right]\left[g_{2} \exp _{2}\right] \ldots\left[g_{n} \exp _{n}\right]\right)\right. \\
& (\text { begin } \\
& \left(\text { set }!f_{1} g_{1}\right) \\
& \left(\text { set }!f_{2} g_{2}\right) \\
& \ldots \\
& \left(\text { set! } f_{n} g_{n}\right) \\
& \text { body })))
\end{aligned}
$$

How do we do that?

First, we need the g's to variables that don't appear anywhere else.

 gensym is a Scheme function of no arguments that generates a new, unused symbol:(gensym) might return a value such as 'g8035

Now, what are the pieces we have in an expression such as
input $=\quad\left(\operatorname{letrec}\left(\left[f_{1} \exp _{1}\right]\left[f_{2} \exp _{2}\right] \ldots\left[f_{n} \exp _{n}\right]\right)\right.$ body)

We have
syms $=\left(f_{1} \ldots f_{n}\right)=($ map car (cadr input) $)$
$\operatorname{exps}=\left(\exp _{1} \ldots \exp _{\mathrm{n}}\right)=($ map cadr (cadr input) $)$ body $=($ caddr input $)$

How do we build
(let ([f $\left.f_{1} 0\right]\left[f_{2} 0\right] \ldots\left[f_{n} 0\right]$)

To build a let-exp for this we need $\left(f_{1} \ldots f_{n}\right)$ We have that: syms

We need that many parsed 0s:
(map parse (map (lambda (x) 0) syms)) Isn't that clever???

We need the parsed body of this let expression. Its body is another let expression, which parses into another let-exp

The inner let is

$$
\text { (let }\left(\left[g_{1} \exp _{1}\right]\left[g_{2} \exp _{2}\right] \ldots\left[g_{n} \exp _{n}\right]\right)
$$

To build a let-exp for this we need

$$
\begin{aligned}
& \text { new-syms }=(\mathrm{g} 1 \ldots \mathrm{gn})==(\operatorname{map}(\operatorname{lambda}(\mathrm{x})(\text { gensym })) \text { syms }) \\
& \text { parsed-exps }=(\text { map parse exps })
\end{aligned}
$$

And the body of this is the begin expression

That begin expression is

(begin
(set! $\mathrm{f}_{1} \mathrm{~g}_{1}$)
(set! $\mathrm{f}_{2} \mathrm{~g}_{2}$)
(set! $f_{n} g_{n}$)
body)))
You can generate the set!s with
(map (lambda (x y)) syms new-syms)
and then append that onto (list (parse body))

And then you are done and everything works!

You deserve to celebrate!!!

